CHEMISTRY 2202 Unit I Section 1 Homework Portfolio 2005 – 2006

INSTRUCTIONS: Save the scanned file as: HWPu1s1_name.pdf (or .tif). Show <u>all</u> calculations.

(Total Value: 2 marks)

Value

(4) 1. Copy and complete this table.

Isotope Notation	Isotope Name	Atomic Number	Mass Number	Number of Protons	Number of Neutrons	Number of Electrons
		38	87			38
	Thorium-230					
⁹⁹ Tc						
		82	208			

- (2) 2. One common type of smoke detector contains a small amount of radioactive americium-241. When smoke enters the detector the radiation inside the detector ionizes the smoke. The ionized smoke then conducts electricity and the alarm buzzes.
 - a) Write americium-241 in isotope notation?
 - b) How many neutrons does this isotope have?
- (4) 3. Calculate the molar mass of each substance.
 - (a) methanol
 - (b) nitrogen gas
 - (c) nickel (III) bromide
 - (e) calcium chloride hexahydrate
- (6) 3. Calculate the mass of each given amount.
 - (a) 2.50 mol of methane, CH₄
 - (b) 0.500 mol of sodium silcate, Na₂SiO₃
 - (c) 0.250 mol of copper(II) nitrate dihydrate, Cu(NO₃)₂ 2 H₂O
- (6) 4. Calculate the number of moles in each sample.
 - (a) 100.0 g of gold metal, Au
 - (b) 50.0 g of silicon dioxide (sand), SiO₂
 - (c) 1.50 kg of potassium nitrate KNO₃

- (2) 5. Calculate the volume of each gas at STP.
 - (a) 5.00 mol of oxygen gas
 - (b) 1.25 kmol of carbon monoxide
- (2) 6. Calculate the number of moles of each gas at STP conditions.
 - (a) 50.0 L of butane, C_4H_{10}
 - (b) 200.0 kL of ozone, O₃
- (2) 7. Calculate the number of molecules in each sample.
 - (a) 0.125 mol of hydrogen
 - (b) 0.250 kmol of carbon dioxide
- (2) 8. Calculate the number of moles in each sample.
 - (a) 7.50 x 10²⁴ formula units of potassium chloride
 - (b) 1.25×10^{22} atoms of barium
- (4) 9. Perform these conversions:
 - (a) 25.0 g of strontium fluoride to number of formula units.
 - (b) 250 L of methane, CH₄ at STP to a mass amount.
- (3) 10. Calculate the percentage composition of the elements in benzene, C₆H₆.
- (4) 11. The fermentation of apples produces apple cider. Upon chemical analysis of the cider a chemical compound is isolated and is found to be composed of 52.14% carbon (C), 13.13% hydrogen (H) and 34.73% oxygen (O). Based on this information, what is the empirical formula of this compound?
- (4) 12. A white powder is analyzed and found to contain 43.64% phosphorus and 56.36% oxygen by mass and had a molar mass of 283.88 g/mol. What are the compound's empirical and molecular formulas?